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Abstract— Logic synthesis requires extensive tuning of the
synthesis optimization flow where the quality of results (QoR)
depends on the sequence of optimizations used. Efficient design
space exploration is challenging due to the exponential number
of possible optimization permutations. Therefore, automating the
optimization process is necessary. In this work, we propose a
novel reinforcement learning-based methodology that navigates
the optimization space without human intervention. We demon-
strate the training of an Advantage Actor Critic (A2C) agent that
seeks to minimize area subject to a timing constraint. Using the
proposed methodology, designs can be optimized autonomously
with no-humans in-loop. Evaluation on the comprehensive EPFL
benchmark suite shows that the agent outperforms existing
exploration methodologies and improves QoRs by an average
of 13%.

I. INTRODUCTION

Logic synthesis transforms a high-level description of a de-
sign into an optimized gate-level representation. Modern logic
synthesis tools represent a given design as an And-Inverter
Graph (AIG), which encodes representative characteristics
for optimizing Boolean functions. Logic Synthesis mainly
consists of three tightly-coupled steps, namely pre-mapping
optimizations, technology mapping, and post-mapping opti-
mizations. In the pre-mapping optimization phase, technology
independent transformations are performed on the AIG to
reduce the graph size resulting in a less total area, while ad-
hering to a delay constraint. Next, in the technology mapping
phase, the generic intermediate nodes are mapped to standard
cells of a specific technology (e.g. ASIC standard cells).
After that, post-mapping optimizations perform technology-
dependent optimizations, such as up-sizing and downsizing.

Developing an efficient logic synthesis optimization flow
proves to be an intricate task, requiring input from experienced
designers. The complexity of designing such flows mainly
arises from the exponentially large search space of the avail-
able transformations. In particular, with many transformation
possibilities, different recurrence and permutations of such
transformations can significantly affect the QoR [1], [2]. In
addition, the increasing divergence and complexity in circuit
designs have further complicated the design of optimization
flows. It is crucial to note that there does not exist a pre-
defined sequence of transformations that would generate best
QoR for all possible circuits, and the optimization flows need
elaborate tuning for each input.

At the same time, the advances in machine-learning (ML),
and specifically reinforcement-learning (RL), have enabled
autonomous agents to improve their capabilities in navigating
a complex environment. Recently, successful implementations

of such agents have shown to reach to human level or
even outperform humans [3], [4]. For instance, AlphaGo was
recently named the first computer to beat a professional human
Go player [3].

In this light, we propose a novel methodology based on RL
that aims at producing logic synthesis optimization flows. Our
contributions in this work are as follows:
• We address the challenge of developing efficient design

space exploration strategy. We map the problem of logic
synthesis optimization to a game-like environment under-
standable by a reinforcement learning agent, and formu-
late a feature set extracted from the AIG characteristics.
In addition, we derive a novel multi-objective reward
function that aids the agent in minimizing the area subject
to a delay constraint.

• We introduce DRiLLS (Deep Reinforcemnet Learning-
based Logic Synthesis), a novel framework based on
reinforcement learning developed for generating logic
synthesis optimization flows. Our methodology elimi-
nates the need for a “human expert” tuning the synthesis
parameters. It can be applied to any circuit design,
without the need for a special setup.

• We demonstrate the capabilities of our proposed approach
on the EPFL arithmetic benchmark suite [5]. We com-
pare our work against best results from the benchmark
suite when mapped to a standard cell library, in addi-
tion to classical optimization algorithms such as greedy
heuristics. Expert-developed flows are also evaluated for
baseline comparison. We show that DRiLLS outperforms
previous techniques [5], [6].

The rest of the paper is organized as follows. First, in
Section II, we define the problem and summarize relevant
previous work. Next, in Section III, we present a background
on RL that is utilized in our approach. Section IV provides
the motivation for our work as well as a detailed discussion
on the proposed methodology. After that, we summarize
our experimental results in Section V. Finally, Section VI
summarizes the main contributions of this paper and provides
possible future directions.

II. DESIGN SPACE EXPLORATION

A. Problem Statement

In logic synthesis frameworks, there exist a rich set of prim-
itive transformations, each optimizing the circuit using a dif-
ferent algorithm (e.g. balancing, restructuring). Permutations
of these optimizations generate different QoR. Furthermore,
different repetitions of the same transformations affect the
QoR and therefore result in an exponentially growing search

ar
X

iv
:1

91
1.

04
02

1v
2 

 [c
s.A

I]
  1

3 
N

ov
 2

01
9



space. Synthesis flows for large circuits often have tens or
hundreds of optimization commands.

We define A = {a1, a2, ...an} as the set of available
optimizations in a logic synthesis tool. Let k be the length
of an optimization flow. Assuming that optimizations can be
processed independently (e.g. no constraint for running a1
before a2), there exists nk possible flows. Yu et. al. show
that different flows indeed result in divergent area and delay
results [1]. While human experts have traditionally guided the
search, the increasing complexity of the designs and synthesis
optimizations have highlighted the need for an autonomous
exploration methodology.

B. Related Work

Methodologies for design space exploration (DSE) of com-
puting systems and EDA technology have received significant
interest in the research community. On architectural level, Ipek
et al. propose predictive models based on neural networks, to
explore the design space of memory, processor, and multi-chip
processor domains and predict the performance [7]. Similarly,
Ozisikyilmaz et al. explore design space pruning by perfor-
mance prediction of different computing configurations [8]. In
their work, they utilize three statistical models tuned on a small
subset of the possible designs. A learning-based methodology,
relying on random forests for design space exploration of high-
level synthesis flows is also proposed [9].

More recently, Ziegler et al. proposed SynTunSys [2], a
synthesis parameter tuning system which iteratively combines
optimizations and focuses on the “survivor set” for further
pursuit. Specifically, in each iteration, the candidates are
assigned estimated costs and scenarios with the lowest cost
values are evaluated. The cost estimator is then updated based
on the learned costs [10]. Taking a different approach, Yu et
al. mapped the problem of logic synthesis design flow compo-
sition to a classification problem [1]. They then utilize convo-
lutional neural networks to classify sample flows, encoded as
pictures, to “angel” or “devil” flows. Therefore, for their work
they require a fixed length for the optimization, and a large
sample size of pre-defined optimization flows for training and
tests. Our work is different from the previous work in that we
propose to use a reinforcement learning agent to explore the
search space for the purpose of optimizing particular synthesis
metrics (e.g., area and delay), and therefore, enabling variable
length optimization flows, without requiring sample flows for
training. Next, we discuss relative background on RL that is
used in this work.

In recent years, reinforcement learning (RL) agents have
demonstrated immense capabilities in navigating complicated
environments [11], [3]. While earlier work using RL focused
on domains with fully observable state space or where features
could be handcrafted, Mnih et al. expanded these capabilities
by introducing deep Q-networks (DQN) [11]. Capitalizing on
recent advances in deep neural networks, their agent achieves
state-of-the-art performance in comparison to previous mod-
els, performing comparable to humans. Further improving
the capabilities of RL agents, in their work, Lillicrap et al.
extended the action domain to continuous domain, targeting
physical domains [12].

III. BACKGROUND ON REINFORCEMENT LEARNING

In this section, we briefly discuss the background necessary
for developing our methodology. In reinforcement learning, an
agent is trained to choose actions, in an iterative manner, that
maximize its expected future reward. Formally,
• At each iteration k, and based on the current state of the

system sk, the agent chooses an action ak from a finite
set of possible actions A.

• With the application of the action at step k, the system
moves to the next state sk+1 and a reward of g(sk, ak)
is then provided to the agent.

• The agent iteratively applies actions, changing the state
of the system and getting rewards. It is then trained based
on the collected experience to move toward maximizing
its reward in future iterations.

A policy is defined as a mapping M that, for each given
state, assigns a probability mass function M(·|a) for an
action [13]. There are two major categories for implementing
the mappingM: value-based and policy-based methodologies.
In value-based methods (e.g. Q-learning) a value function is
learned by the system that effectively maps (state, action)
pairs to a singular value [14], and picks the maximum over
all possible actions. On the contrary, in policy-based methods
(e.g. policy gradient), the optimization is performed directly on
the policy (M) [15]. Actor Critic algorithms [13], as a hybrid
class, combine the benefits of both aforementioned classes.

In actor critic methods, a tunable critic network provides
a measure of how good the taken action is (similar to a
reward function), while the tunable actor network chooses the
actions based on the current state. More formally defined, the
actor policy function is of the form πθ(s, a), and the critic
function is of the form q̂w(s, a); where s, and a represent
the state and the action, while θ, and w represent the tunable
parameters within each network. Therefore, there exist two
sets of parameters, one for each network, that need to be
optimized. The gradient optimization for the critic network
is performed as,

∆w = βδ∇w q̂w(sk, ak) (1)

where β sets different learning rate for policy and value. δ is
the temporal difference error, which is defined as

δ = R(s, a) + γq̂w(sk+1, ak+1)− q̂w(sk, ak) (2)

where γ is the discount factor. Similarly, the gradient opti-
mization for the policy update (actor network) is then defined
as

∆θ = α∇θ(log πθ(s, a))q̂w(s, a) (3)

where α sets the learning rate. Note that actor network policy
update is a function of the critic network as well, which allows
it to take into consideration not only the current state of the
environment, but also the history of learning from the critic
network.

While very effective, actor critic models can suffer from
high variability in action probabilities. Advantage functions
are proposed as a solution to reduce this variability. The
advantage function is defined as
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Fig. 1: The architecture of DRiLLS Framework. Numbers on
the arrows represent the workflow of our methodology, and
are illustrated separately in the subsections below.

A(s, a) = Q(s, a)− V (s) (4)

where Q(s, a) represents the Q value for action a in state s,
and V (s) represents the average value for the given state. In
this work, we do not want to compute Q(s, a). Instead, we
formulate an estimate of the advantage function as

A(s) = r + γV (s′)− V (s) (5)

where r is the current reward and γ is the discount factor. This
achieves the same result without learning the Q function [16].
Next, we describe the proposed DSE methodology based on
reinforcement learning.

IV. METHODOLOGY

DRiLLS, standing for Deep Reinforcemnet Learning-based
Logic Synthesis, effectively maps the design space exploration
problem to a game environment. Unlike most reinforcement
learning environments where gamification drives the behavior
of the environment, the task here involves combinatorial opti-
mization on a given circuit design. This makes it challenging
to define the state of the game (i.e. environment) and the long-
term incentives for an agent to explore the design space and
not to fall into local minimums.

Figure 1 depicts the architecture of our proposed method-
ology. There are two major components in the framework:
Logic Synthesis environment, which is a setup of the design
space exploration problem as a reinforcement learning task,
and Reinforcement Learning environment, which employs an
Advantage Actor Critic agent (A2C) to navigate the environ-
ment searching for the best optimization at a given state. Next,
we discuss both components and the interaction between them
in details.

1. Design State Representation. In order to model com-
binatorial optimization for logic synthesis as a game, we
define the state of the logic synthesis environment as a set
of metrics retrieved from the synthesis tool on a given circuit
design and used as a feature set for the A2C agent. As
previously discussed, the state also represents the reaction of
the environment to an optimization suggested by the second

TABLE I: Formulation of the multi-objective reward function.
Decr. stands for Decrease and Incr. stands for Increase.

Optimizing
(Area)

Decr. None Incr.

Constraint
(Delay)

Met +++ 0 -

Not Met
Decr. +++ ++ +
None ++ 0 - -
Incr. - - - - - -

component of our framework, namely the Agent. Specifically,
we extract the following state vector:

AIG state =



# primary I/O
# nodes
# edges
# levels
# latches
% ANDs
% NOTs


.

To keep the states within a specific range, as required by the agent’s
neural networks, we normalize all state values by their corresponding
values for the initial input design. Normalization is also a requirement
for model generalization so that can be applied to unseen designs. On
the one hand, optimizations change all elements in the state vector,
except for the number of primary inputs and outputs. On the other
hand, values in the state vector depict representative characteristics
of the circuit. For example, a large # nodes value directs the
agent towards reducing the number of nodes, which is achieved
by restructuring the current AIG and maximally sharing the other
nodes available in the current network (e.g. resub and refactor
commands in ABC). Moreover, a large # levels value steers the
agent towards choosing a balance transformation. Hence, the state
vector is representative of the circuit design at a given optimization
step, and is aligned with the optimization space as we will discuss
next.

2. Optimization Space. The agent explores the search space
of seven primitive transformations, within ABC synthesis frame-
work [17]. Specifically, A = {resub, resub -z, rewrite, rewrite -z,
refactor, refactor -z, balance}. The first six transformations target
size reduction of the AIG, while the last one (balance) reduces the
number of levels. These transformations manipulate the state vector
representation discussed above, and are appropriate for the reward
function illustrated next.

3. Reward Function. We define a multi-objective reward function
that takes into account the change in both design area and delay.
In particular, the agent is rewarded for reducing the design area,
while keeping the delay under a pre-specified constraint value. Table
I shows the reward formulation of this function. For each metric
(design area or delay), a transformation would decrease, increase or
make no change to the metric. Accordingly, we give the highest re-
ward (represented as +++) for a transformation performed on a given
AIG state that reduces the area and meets the delay constraint. We
give the lowest negative reward when the transformation performed
increases the design area and delay, while not meeting the constraint.
Between the two extremes, the values and magnitudes of the reward
have been chosen carefully to aid in the agent exploration. Essentially,
we prioritize meeting the delay constraint. When not met, a positive
reward is also given if the delay improved (i.e. decreased). This
reward strategy prevents the agent from receiving negative reward
in all attempts in cases where the delay constraint was too tight for
the design to meet. Moreover, when the area increases and the delay
decreases (but not meeting the constraint), a small positive reward is
given as the agent is trying to learn from not meeting the constraint.
This reward formulation has proved to be efficient as we will discuss
in the next section.

4. Collecting Experiences. Algorithm 1 summarizes the operation
of our proposed methodology. Here, lines 1 and 2 initiate the logic
synthesis environment and the agent, respectively. Next, the agent is



Algorithm 1: DRiLLS Framework
Input : Design, Primitive Transformations
Output: Optimization Flow

1 env = Initialize(LS Env);
2 agent = Initialize(A2C);
3 for episode = 1 to N do
4 episode design states = [];
5 optimization sequence = [];
6 synth rewards = [];
7 design state = env.reset();
8 for iteration = 1 to k do
9 opt probs = agent.ActorForward(design state);

10 primitive opt = RandomChoice(opt prob);
11 [next design state, synth reward] =

env.perform(primitive opt);
12 episode design states.append(design state);
13 optimization sequence.append(primitive opt);
14 synth rewards.append(synth reward);
15 design state = next design state;
16 end
17 episode rewards = DiscountRewards(synth rewards,

gamma)
18 loss = agent.OptimizerForward(episode design states,

optimization sequence, episode rewards);
19 agent.update(loss);
20 log(episode);
21 end

trained over the span of N episodes, where in each episode the logic
synthesis environment is restarted; i.e. the original input design is
reloaded (line 7). Next, in lines 8-16, the agent iteratively suggests a
sequence of k primitive optimizations to produce the optimization
flow. More specifically, first, in line 9, the agent computes the
probability distribution of choosing one primitive optimization from
the optimization space, A. Then, in line 10, one of the primitive
optimizations is selected according to the probability distribution
calculated in line 9. Next, in line 11, the selected optimization is
executed to determine its effect on the design state. In addition,
the reward is computed using the reward function in Table I. After
that, we store the synthesis state, the optimization performed and
the reward in the pre-initialized variables. Finally, we transition the
state of the agent to the state after performing the optimization. The
number of iterations is capped by k to provide the game with an
elimination condition, and as the optimization improvements on a
given circuit design fade out in later iterations. After all iterations
are performed, we train the A2C agent from the collected experiences
as we will discuss next.

5. A2C Agent Training. The training step starts with discounting
the delay rewards over iterations in order to give earlier iterations a
higher priority in choosing a good optimization (line 17). After that,
in lines 18-19 the loss is computed and the actor and critic networks
are trained to minimize the loss value as described next. As discussed
in Section III, the agent has a hybrid policy-based and value-based
networks, called actor and critic respectively. Both networks have an
input layer of size equal to the AIG state vector length. In addition, a
reward, r is passed to the critic network for training, and a discounted
reward is passed to the actor network (Equation 5). The actor network
outputs probability distribution over the available transformations.
Therefore, the output layer in the actor network has a size equal to
the size of A. Since the agent is initialized with random parameters,
transformations chosen in the start of the training process do not
necessarily represent a good choice. Parameters of both networks
are updated to reduce the loss using a gradient-based optimizer. This
process is then repeated for a pre-defined number of times (called
episodes), during which the agent is trained to predict improved
optimization flows. In fact, the choice of a hybrid reinforcement
learning architecture is suited for combinatorial optimization tasks
as it gives the agent an opportunity to explore diverse optimization

sequences, yet maintain a path towards optimal designs.

V. EXPERIMENTAL RESULTS

We demonstrate the proposed methodology by utilizing the open-
source synthesis framework ABC v1.01 [17]. We implement DRiLLS
in Python v3.5.2 and utilize TensorFlow r1.12 [18] to train the A2C
agent neural networks. All experiments are synthesized using ASAP7,
a 7 nm standard cell library in typical processing corner. We evaluate
our framework on EPFL arithmetic benchmarks [5], exhibiting wide
ranges of circuit characteristics. The characteristics of the evaluated
benchmarks (e.g. I/Os, number of nodes, edges and levels) can be
found in [5]. Experimental parameters were setup as:

• Episodes (N ): 50, Iterations (k): 50
• Networks Size: Actor: 2 fully connected layers, 20 hidden

units each. Critic: one hidden layer with 10 units.
• Weight initialization: Xavier initialization [19]
• Optimizer: Adam [20], Learning Rate: (α): 0.01
• Discount rate (γ): 0.99

A small number of layers is used as we observe that deeper neural
networks exhibit a random behavior and do not train well in this
framework. This is attributed to the nature of the small number
of features and transformations used. The experimental results are
obtained using a machine with Intel Xeon 2x14cores@2.4 GHz,
128GB RAM, and 1x500GB SSD; running Ubuntu 16.04 LTS. Next,
we present our results.

A. Design Space Exploration
Figure 2 shows traces of the agent searching for an optimized

design that minimizes area, and meets the delay constraint. We
plot one episode that finds the global minimum for a number of
representative benchmarks. Generally, Figure 2 shows the attempts
of the agent to balance between reducing the design area and meeting
the delay constraint. For example, we observe the various trials of
the agent to execute a transformation that reduces the delay to meet
the constraint, but increases the design area such as iteration 30 in
Log2 and iteration 26 in Max. Occasionally, exploration saturates as
we can notice near-straight lines in some iterations. This shows the
ability of the actor-critic networks to guide the exploration, while
occasionally exploring other transformations that might open new
search paths.

B. Comparison to Other Techniques
We compare the agent’s performance against EPFL best results,

expert-crafted scripts, and a greedy heuristic algorithm:
1) EPFL best results: best results are provided for size and depth.

We compare against best results for size, since it is more
relevant to the agent’s nature of optimizing for area when
mapping to a standard cell library.

2) Expert-crafted scripts: we maintain a record of expert-crafted
synthesis optimizations derived from [6].

3) Greedy heuristics algorithm: we developed a baseline com-
parison that takes an initial input design and spawns parallel
threads to perform each of the given AIG transformations on
the design. Afterwards, each thread performs the mapping step
using the delay constraint. The algorithm then evaluates the
mapped designs from all threads, and keeps the one with the
minimum area for the next iteration. After that, the process is
repeated until two iterations yield the same area.

Table II gives the results of the mentioned comparisons. The area
and delay for the initial design are obtained by loading the non-
optimized designs in ABC and mapping them to ASAP7 without
performing any transformation on the AIG. The delay is reported
using the built-in timer in ABC (using stime command). We use the
initial run to select a delay constraint value that challenges all the
methods studied in this work. We make the following observations:

• The greedy algorithm has a single optimization target (area).
Although the delay constraint was met in 4 designs, it is
attributed to the best-effort mapping step that considers the
delay constraint. The increase in the area occurs in the first
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Fig. 2: Traces of DRiLLS agent navigating the design space to find a design with a minimum area while meeting the delay
constraint.

TABLE II: Area-delay comparison of logic synthesis optimization results. A greedy algorithm optimizes for area. Expert-crafted
scripts are derived from [6]. EPFL best results for size are available at [5].

Benchmark
Delay

Constr.
(ns)

Initial Design Greedy Expert-crafted [6] EPFL Best Size [5] DRiLLS
Area

(um2)
Delay
(ns)

Area
(um2)

Delay
(ns)

Impr.
(%)

Area
(um2)

Delay
(ns)

Impr.
(%)

Area
(um2)

Delay
(ns)

Impr.
(%)

Area
(um2)

Delay
(ns)

Impr.
(%)

Adder 2.00 867 2.02 1011 4.10 -16% 1772 1.82 -104% 1690 1.87 -94% 823 1.97 5%

B. Shifter 0.80 2499 1.03 2935 0.66 -17% 1534 0.77 38% 1040 0.77 58% 1400 0.77 43%

Divisor 75.00 12388 75.83 22439 79.14 -81% 21167 65.05 -70% 16031 74.91 -29% 13441 67.61 -8%

Hypotenuse 1000.00 176938 1774.32 236271 563.12 -33% 210828 525.34 -19% 169468 1503.88 4% 154227 995.95 12%

Log2 7.50 19633 7.63 30893 6.96 -57% 18451 7.45 6% 23999 10.12 -22% 17687 7.44 9%

Max 4.00 1427 4.48 3082 3.79 -115% 1440 3.93 -0.88% 1713 4.84 -20% 1037 3.76 27%

Multiplier 4.00 19617 3.83 25219 4.38 -28% 21094 3.70 -7% 19940 5.27 -1% 17797 3.96 9%

Sin 3.80 3893 3.65 5501 2.88 -41% 4421 2.19 -13% 4892 4.14 -25% 3050 3.76 21%

Square-root 170.00 11719 329.46 19233 93.71 -64% 16594 92.30 -41% 9934 169.46 15% 9002 167.47 23%

Square 2.20 11157 2.27 19776 3.96 -77% 16373 1.59 -46% 16838 4.06 -50% 12584 2.199 -12%

Avg. Area Imprv. 0.00% -53.31% -26.00% -16.69% 13.19%

Constraint Met 2/10 4/10 9/10 4/10 10/10

iteration that tries to meet the delay constraint while mapping.
Since the algorithm meets the stop criteria in the first few
iterations, it fails to reduce the area subject to a delay constraint.
Results show the smallest average area improvement.

• Although expert-crafted synthesis scripts have not improved
the designs’ areas, they produced optimized designs that meet
the delay constraint in 9 out of 10 designs. This comes at
no surprise as the techniques used strive to meet the delay
constraint; therefore, accepting near-optimal area results [6].

• EPFL best results have shown decent improvements in 3 de-
signs, meeting the delay constraint in 4 of them. Although we
benchmarked on the best results in terms of size, not depth, it
is reasonable that their optimization techniques have not been
designed for standard cell library mapping.

• DRiLLS agent meets the delay constraint in all designs while
simultaneously improving the design area by an average of
13.19%. In the two designs that DRiLLS increased their area, it
in fact met the delay constraint which the un-optimized design
did not meet. This proves that the reward function defined

before is an effective one for training the agent. Moreover,
DRiLLS outperforms EPFL best result in all designs except
Barrel shifter.

In the interest of space, Figure 3 elaborates on Table II by plotting
the area-delay trade-offs offered by DRiLLS against the greedy
algorithm, the expert-crafted synthesis scripts and the EPFL best
results on six of the benchmarks. We define the exploration run
time as the total run time of the agent, including interacting with
the Logic Synthesis Environment, extracting AIG characteristics, and
optimizing the parameters of the agent networks. The smallest design
(Adder) is explored in 3.25mins, while the largest (Hypotenuse) is
explored in 25.46mins. The average exploration time is 12.76mins per
episode. It is important to note that a trained model on one circuit
design can be used (reloaded) into a new exploration on new circuits
requiring no retraining.

VI. CONCLUSIONS

The goal of developing DRiLLS is to offer an autonomous
framework that is able to explore the optimization space of a given
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Fig. 3: Design area vs. delay trade-offs. The vertical dotted red line shows the delay constraint. For each benchmark, DRiLLS
exploration space is indicated in green diamonds. A highlighted triangle represents the best optimized design that meets the
delay constraint. Other methods are shown in red color with a cross mark, a plus mark and a circle for greedy, expert-crafted
and EPFL result respectively.

circuit design, and produce a high Quality of Result (QoR) with
no human in-loop. The intuition behind modeling this problem into
a reinforcement learning context is to provide the machine with a
methodology to try and error, similar to how human experts gain
their experience optimizing designs.

In this work, we have presented a methodology based on reinforce-
ment learning that enables autonomous and efficient exploration of
the logic synthesis design space. Our proposed methodology maps
the complex search space to a “game” where an advantage actor critic
(A2C) agent learns to maximize its reward (reduce area subject to
a delay constraint) by iteratively choosing primitive transformations
with the highest expected reward. We have formulated an AIG state
representation that has proved to effectively represent the feature set
of a design state. In addition, we have introduced a novel multi-
objective reward function that guides the exploration process of the
agent. It allows the agent to find a minimum design area subject
to delay constraint. Evaluating ten representative benchmarks, our
proposed methodology manifests results that outperform existing
methods.

DRiLLS proves that Reinforcement Learning can be used in
combinatorial optimization of hardware circuit designs. It has a broad
potential to be applied on related physical synthesis tasks, eliminating
the need for human experts. The framework is open-source under a
permissive license (BSD-3) and is available publicly on GitHub1.
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[5] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in IWLS, no. CONF, 2015.

[6] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,”
in ICCAD. IEEE, 2012, pp. 597–604.
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